You can use a custom Java InputFormat together with a Python RecordReader: the java RecordReader supplied by the InputFormat will be overridden by the Python one.
Consider the following simple modification of Hadoop’s built-in TextInputFormat:
package it.crs4.pydoop.mapred;
import java.io.*;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
public class TextInputFormat extends FileInputFormat<LongWritable, Text>
implements JobConfigurable {
private Boolean will_split;
public void configure(JobConf conf) {
will_split = conf.getBoolean("pydoop.input.issplitable", true);
}
protected boolean isSplitable(FileSystem fs, Path file) {
return will_split;
}
public RecordReader<LongWritable, Text> getRecordReader(
InputSplit genericSplit, JobConf job, Reporter reporter
)
throws IOException {
reporter.setStatus(genericSplit.toString());
return new LineRecordReader(job, (FileSplit) genericSplit);
}
}
With respect to the default one, this InputFormat adds a configurable boolean parameter (pydoop.input.issplitable) that, if set to false, makes input files non-splitable (i.e., you can’t get more input splits than the number of input files).
The following code implements the same input format with MapReduce V2:
package it.crs4.pydoop.mapreduce;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;
public class TextInputFormat extends FileInputFormat<LongWritable, Text> {
@Override
public RecordReader<LongWritable, Text> createRecordReader(
InputSplit split, TaskAttemptContext context) {
return new LineRecordReader();
}
@Override
protected boolean isSplitable(JobContext context, Path file) {
return context.getConfiguration().getBoolean(
"pydoop.input.issplitable", true);
}
}
For details on how to compile the above code into a jar and use it with Pydoop, see examples/input_format.